Kubernetes Observability Stack: A Production Implementation Guide

Build a comprehensive observability stack for Kubernetes using open-source tools.

QuantumBytz Team
January 17, 2026
Share:
Kubernetes observability dashboard

Introduction

Observability in Kubernetes requires coordinated implementation of metrics, logs, and traces. This guide walks through building a production-ready observability stack using proven open-source tools.

The Three Pillars

Metrics

Numerical measurements over time:

  • CPU, memory, network utilization
  • Request rates and latencies
  • Business KPIs

Logs

Discrete events with context:

  • Application logs
  • System logs
  • Audit logs

Traces

Request flow across services:

  • Distributed transaction tracking
  • Latency breakdown
  • Dependency mapping

Stack Components

Metrics: Prometheus + Grafana

Prometheus for collection and storage:

  • Pull-based metrics collection
  • PromQL query language
  • Built-in alerting

Grafana for visualization:

  • Powerful dashboards
  • Multi-data-source support
  • Alerting integration

Logs: Loki + Promtail

Loki for log aggregation:

  • Prometheus-inspired design
  • Label-based indexing
  • Cost-effective storage

Promtail for collection:

  • Automatic Kubernetes discovery
  • Pipeline processing
  • Label enrichment

Traces: Tempo + OpenTelemetry

Tempo for trace storage:

  • Scales to millions of traces
  • Object storage backend
  • TraceQL query language

OpenTelemetry for instrumentation:

  • Vendor-neutral
  • Auto-instrumentation
  • Unified collection

Implementation

Step 1: Deploy Prometheus Stack

Using Helm:

helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update

helm install prometheus prometheus-community/kube-prometheus-stack \
  --namespace monitoring \
  --create-namespace \
  --set grafana.adminPassword=your-secure-password

Key configurations:

# values.yaml
prometheus:
  prometheusSpec:
    retention: 30d
    storageSpec:
      volumeClaimTemplate:
        spec:
          storageClassName: fast-ssd
          resources:
            requests:
              storage: 100Gi

    serviceMonitorSelector: {}
    podMonitorSelector: {}

grafana:
  persistence:
    enabled: true
    size: 10Gi

Step 2: Deploy Loki Stack

helm install loki grafana/loki-stack \
  --namespace monitoring \
  --set promtail.enabled=true \
  --set loki.persistence.enabled=true \
  --set loki.persistence.size=50Gi

Configure Promtail for Kubernetes:

# promtail-config.yaml
scrape_configs:
  - job_name: kubernetes-pods
    kubernetes_sd_configs:
      - role: pod
    relabel_configs:
      - source_labels: [__meta_kubernetes_pod_label_app]
        target_label: app
      - source_labels: [__meta_kubernetes_namespace]
        target_label: namespace
    pipeline_stages:
      - json:
          expressions:
            level: level
            message: msg
      - labels:
          level:

Step 3: Deploy Tempo

helm install tempo grafana/tempo \
  --namespace monitoring \
  --set tempo.storage.trace.backend=s3 \
  --set tempo.storage.trace.s3.bucket=traces-bucket

Step 4: Configure OpenTelemetry

Deploy the collector:

apiVersion: v1
kind: ConfigMap
metadata:
  name: otel-collector-config
  namespace: monitoring
data:
  config.yaml: |
    receivers:
      otlp:
        protocols:
          grpc:
          http:

    processors:
      batch:
        timeout: 5s

    exporters:
      otlp:
        endpoint: tempo.monitoring:4317
        tls:
          insecure: true
      prometheus:
        endpoint: "0.0.0.0:8889"

    service:
      pipelines:
        traces:
          receivers: [otlp]
          processors: [batch]
          exporters: [otlp]
        metrics:
          receivers: [otlp]
          processors: [batch]
          exporters: [prometheus]

Step 5: Connect Data Sources in Grafana

Add data sources:

  1. Prometheus: http://prometheus-server:80
  2. Loki: http://loki:3100
  3. Tempo: http://tempo:3100

Enable correlation:

# Grafana data source config
datasources:
  - name: Prometheus
    type: prometheus
    url: http://prometheus-server:80
    jsonData:
      httpMethod: POST

  - name: Loki
    type: loki
    url: http://loki:3100
    jsonData:
      derivedFields:
        - datasourceUid: tempo
          matcherRegex: "traceID=(\w+)"
          name: TraceID
          url: '${__value.raw}'

  - name: Tempo
    type: tempo
    url: http://tempo:3100

Application Instrumentation

Automatic Instrumentation

For Java applications:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-java-app
spec:
  template:
    metadata:
      annotations:
        instrumentation.opentelemetry.io/inject-java: "true"

Manual Instrumentation

For custom metrics:

import (
    "github.com/prometheus/client_golang/prometheus"
)

var requestsTotal = prometheus.NewCounterVec(
    prometheus.CounterOpts{
        Name: "http_requests_total",
        Help: "Total HTTP requests",
    },
    []string{"method", "path", "status"},
)

func init() {
    prometheus.MustRegister(requestsTotal)
}

Alerting Configuration

Prometheus Alerting Rules

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
  name: application-alerts
spec:
  groups:
    - name: application
      rules:
        - alert: HighErrorRate
          expr: |
            sum(rate(http_requests_total{status=~"5.."}[5m]))
            / sum(rate(http_requests_total[5m])) > 0.05
          for: 5m
          labels:
            severity: critical
          annotations:
            summary: High error rate detected

Dashboards

Essential dashboards:

  1. Cluster Overview: Node health, resource utilization
  2. Namespace View: Per-namespace metrics
  3. Service Dashboards: RED metrics per service
  4. enterprise-ai-infrastructure-gpu-clusters-cloud-services" title="Building Enterprise AI Infrastructure: GPU Clusters vs Cloud Services" class="internal-link">Infrastructure: Storage, infiniband-ethernet-ai-workloads" title="GPU Cluster Networking: InfiniBand vs Ethernet for AI Workloads" class="internal-link">networking

Conclusion

A comprehensive observability stack enables faster troubleshooting and better understanding of system behavior. Start with metrics, add logs for context, and implement tracing for distributed systems visibility.

QuantumBytz Team

The QuantumBytz Editorial Team covers cutting-edge computing infrastructure, including quantum computing, AI systems, Linux performance, HPC, and enterprise tooling. Our mission is to provide accurate, in-depth technical content for infrastructure professionals.

Learn more about our editorial team